Transcriptome analyses of the Giardia lamblia life cycle.

نویسندگان

  • Shanda R Birkeland
  • Sarah P Preheim
  • Barbara J Davids
  • Michael J Cipriano
  • Daniel Palm
  • David S Reiner
  • Staffan G Svärd
  • Frances D Gillin
  • Andrew G McArthur
چکیده

We quantified mRNA abundance from 10 stages in the Giardia lamblia life cycle in vitro using Serial Analysis of Gene Expression (SAGE). 163 abundant transcripts were expressed constitutively. 71 transcripts were upregulated specifically during excystation and 42 during encystation. Nonetheless, the transcriptomes of cysts and trophozoites showed major differences. SAGE detected co-expressed clusters of 284 transcripts differentially expressed in cysts and excyzoites and 287 transcripts in vegetative trophozoites and encysting cells. All clusters included known genes and pathways as well as proteins unique to Giardia or diplomonads. SAGE analysis of the Giardia life cycle identified a number of kinases, phosphatases, and DNA replication proteins involved in excystation and encystation, which could be important for examining the roles of cell signaling in giardial differentiation. Overall, these data pave the way for directed gene discovery and a better understanding of the biology of G. lamblia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antigenic switching of TSA 417, a trophozoite variable surface protein, following completion of the life cycle of Giardia lamblia.

Expression of TSA 417, the predominant cysteine-rich variable surface protein of Giardia lamblia WB clone C6 trophozoites, did not change during encystation in vitro. However, in vitro excystation of cysts derived in vitro or in vivo consistently produced TSA 417 nonexpressing trophozoite populations, suggesting that completion of the life cycle leads to antigenic switching.

متن کامل

Oxidative stress-induced cell cycle blockage and a protease-independent programmed cell death in microaerophilic Giardia lamblia

Giardia lamblia is a microaerophilic human gastrointestinal parasite and considered as an early-diverged eukaryote. In vitro oxidative stress generation plays a significant role in cell cycle progression and cell death of this parasite. In the present study hydrogen peroxide, metronidazole, and a modified growth medium without cysteine and ascorbic acid have been chosen as oxidative stress-indu...

متن کامل

Identification of the major cysteine protease of Giardia and its role in encystation.

Giardia lamblia is a protozoan parasite and the earliest branching clade of eukaryota. The Giardia life cycle alternates between an asexually replicating vegetative form and an infectious cyst form. Encystation and excystation are crucial processes for the survival and transmission of Giardia. Cysteine proteases in Giardia have been implicated in proteolytic processing events that enable the co...

متن کامل

Giardia lamblia-induced changes in gene expression in differentiated Caco-2 human intestinal epithelial cells.

The parasitic protozoan Giardia lamblia is a worldwide cause of diarrhea, but the mechanism of disease remains elusive. The parasite colonizes the small intestinal epithelium, known to be a sensor for the presence of enteric pathogens, without invading or causing severe inflammation. In this study we investigated the epithelial cell response to G. lamblia. Differentiated Caco-2 cells were infec...

متن کامل

Epigenetic mechanisms regulate stage differentiation in the minimized protozoan Giardia lamblia.

Histone modification is an important mechanism regulating both gene expression and the establishment and maintenance of cellular phenotypes during development. Regulation of histone acetylation via histone acetylases and deacetylases (HDACs) appears to be particularly crucial in determining gene expression patterns. In this study we explored the effect of HDAC inhibition on the life cycle of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and biochemical parasitology

دوره 174 1  شماره 

صفحات  -

تاریخ انتشار 2010